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A method is presented for the concise synthesis of 3-formyl-4-hydroxyquinolin-2(1H)-ones through tri-
flic anhydride-mediated tandem formylation/cyclization of cyanoacetanilides. This tandem process was
successfully used for the rapid syntheses of glycocitlones A and C.
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Substituted 4-alkoxy- and 4-hydroxyquinolin-2(1H)-ones 1
(Fig. 1) such as glycocitlones A-C (2-4)! are widely found among
quinoline alkaloids of rutaceous plants.> Compound 1 also form a
valuable class of biologically active molecules,? including human
immunodeficiency virus type 1 (HIV-1) integrase inhibitors® and
hepatitis C virus (HCV) inhibitors.3>® Therefore, a diversity-ori-
ented strategy* for the preparation of this class of compounds in
a practical and concise manner would be very useful for drug
discovery.

In our view, the development of an efficient method for the syn-
thesis of 3-formyl-4-hydroxyquinolin-2(1H)-ones 5 would be
invaluable for the diversity-oriented synthesis of 1 since 5 possess
hydroxy and formyl functionality that can help in the synthesis of a
wide range of compounds® (Scheme 1). We expect that 5 can be
prepared from cyanoacetanilides 6 and N,N-dimethylformamide
(DMF) by simultaneous cyclization and functionalization,®’” which
is a powerful and direct approach to prepare diverse derivatives
from a simple precursor. This approach would dramatically reduce
the consumption of solvents, reagents, and energy, as compared to
the stepwise preparation of 5.3

Herein, we report a concise and practical method to obtain 5
from 6 through tandem formylation/cyclization. The salient fea-
tures of our method are as follows: (1) a variety of cyanoacetani-
lides are readily available® (2) multiple C-C bond formation
allows for the rapid synthesis of functionalized quinolinones 5
from simple starting materials, and (3) facile isolation of 5 is
accomplished by a simple aqueous workup.

We first examined the reaction of cyanoacetanilide 6a in DMF
(Table 1). We found that the use of trifluoromethanesulfonic anhy-
dride (Tf;0) in the tandem reaction yielded 3-formyl-4-hydroxy-
quinolin-2(1H)-one 5a in 71% yield (entry 4). Other reagents such
as POCls, (COCl),, and SOCI, were found to be incapable of yielding
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this compound (entries 1-3). Three equivalents of Tf,0 were
required to obtain 5a in good yield (entry 4 vs entry 6). It is impor-
tant to note that 5a was isolated as a precipitate by the simple
aqueous workup, and a gram-scale reaction can be conducted eas-
ily (entry 5).

We next performed several experiments to gain mechanistic
insights into the tandem reaction (entries 7-10). When 6a was
treated with trifluoromethanesulfonic acid (TfOH) instead of
Tf,0, no reaction occurred and unreacted 5a was recovered (entry
7).1° The treatment of 6a with a combination of TfOH (2.0 equiv)
and Tf,0 (1.0 equiv) resulted in almost the same result as that in
entry 6 (entry 8), indicating that a Bronsted-acid-catalyzed Hou-
ben-Hoesch reaction''!? did not occur in the tandem reaction
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Figure 1. 4-Alkoxy- and 4-hydroxyquinolin-2(1H)-ones.

Scheme 1. Synthetic strategy.
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Table 1
Survey of the reaction conditions®

OH
R CHO
@ L reagent S H
=
N™ 0
Me nD?quh rTI ¢
? Me
6a,7 5a
Entry Substrates (R) Reagent® (equiv) Yield of 5a“
1 6a (CN) POCl; (3.0) 0d
2 6a (CoCl), (3.0) 0¢
3 6a S0Cl, (3.0) 0¢
4 6a Tf,0 (3.0) 71
5F 6a Tf,0 (3.0) 84
6 6a Tf,0 (1.0) 26
7 6a TfOH (3.0) nr.f
8 6a Tf,0 (1.0) + TfOH (2.0) 29
98 6a Tf,0 (3.0) n.r.f
10 7 (CO,Et) Tf,0 (3.0) 0d

2 Unless otherwise noted, all reactions were carried out with 3.0 mmol of sub-
strates in N,N-dimethylformamide (3.0 mL, 13 equiv).

b Tf = trifluoromethanesulfonyl.

¢ Isolated yields.

4 See the Supplementary data.

¢ 15 mmol of 6a was employed.

f No reaction occurred.

& The reaction was carried out in N,N-dimethylacetamide (DMA).

and that Tf,0 played a crucial role in the cyclization step. Further-
more, both DMF and the CN functionality of the substrate were
found to be essential for the formation of 5a (entries 9 and 10).
These results suggest that the reaction of the active methylene of

Tf,O (3 equiv.), DMF, rt, 12 h
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Scheme 2. Plausible mechanism.

6a with the Vilsmeier reagent'? is likely to be an initial step in

the tandem reaction'# (Scheme 2). The introduction of an iminium
substituent in a geminal position relative to the CN group may
increase the electrophilicity of the CN group'® and promote Tf,0-
mediated cyclization (A—B and/or C—D).

Once the optimum conditions were identified, we examined the
substrate scope of the reaction with cyanoacetanilides 6b-j (Table
2). The tandem reaction of 6b and 6¢ in which the para positions

Table 2
Substrate scope of cyanoacetanilides 6" OH
CN
= CHO
R O\ /E 0 (30eq) y Sy
~ — > R~
N O owFr12n Z SN0
R R2
6b-j 5b-j
Entry 6 (R!, R?) Products Yield® (%)
1 6b (p-Me, Me) 5b 79
2 6¢ (p-OMe, Me) 5¢ 69
3 6d (p-Cl, Me) 5d 80
4 6e (p-Br, Me) 5e 68
5 6f (p-CF3, Me) 5f 61
6 6g (m-Me, Me) 5g +5¢g' 784 (5g:5g' = 35:65)°
7 6h (0-Me, Me) 5h 80
8 6i (0-OMe, Me) 5i 69
6j 5j
9 82
@ All reactions were carried out with 3.0 mmol of substrates in N,N-dimethylformamide (3.0 mL, 13 equiv).
b Tf = trifluoromethanesulfonyl.
¢ Isolated yields.
4 The ratio between 5g and 5¢g’ is given in parentheses.
e

The ratio was determined by a 'TH NMR experiment.
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f‘l'l (0]
R Me
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Scheme 3. Synthesis of glycocitlones.

were substituted with electron-donating methyl or methoxy groups
took place smoothly to afford quinolinones 5b and 5¢in 79% and 69%
yields, respectively (entries 1 and 2). Unlike the Houben-Hoesch
reaction, which requires electron-rich arene substrates and dry gas-
eous HCl to afford decent yields of ketones, the tandem reaction can
be successfully carried out with arenes bearing electron-withdraw-
ing substituents (entries 3-5).!4¢1® The halogenated products 5d
and 5e could in principle be further functionalized through transi-
tion-metal-catalyzed coupling reactions. Interestingly, cyanoace-
tanilide 6g afforded regioisomers 5g and 5g’ in 78% combined yield
upon cyclization primarily ortho to the methyl group (ratio of para
to ortho: 35:65) (entry 6). Further, it is noteworthy that ortho-substi-
tuted cyanoacetanilides 6h and 6i were also effective in the tandem
reactions (entries 7 and 8) since the product 5i can be used in the syn-
thesis of quinoline alkaloids (vide infra). Moreover, when this meth-
odology was followed using cyanoacetanilide 6j, a tricyclic
compound (5j) was obtained in high yield (entry 9). Furthermore,
the isolation of all products 5b-j could be easily accomplished by
precipitation and filtration.

Finally, we used 5a and 5i for the synthesis of glycocitlone alka-
loids (Scheme 3). Methylation of hydroxyl groups using Mel and
Ag,0 in MeCN gave aldehydes 8a and 8i. Subsequently, the Horn-
er-Wadsworth-Emmons (HWE) olefination afforded the corre-
sponding o,B-unsaturated esters 9a and 9i. These esters were
then treated with MeMgBr to obtain glycocitlones A (2) and C (4).

In conclusion, we have presented an efficient method for the
conversion of cyanoacetanilides 6 into 3-formyl-4-hydroxyquino-
lin-2(1H)-ones 5; the method involves a novel Meth-Cohn-type
reaction.'® The method is simple and it has the potential to be used
for the synthesis of a wide variety of functionalized quinolin-
2(1H)-ones. Further, the use of the method in synthetic applica-
tions is under investigation and will be reported in due course.
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